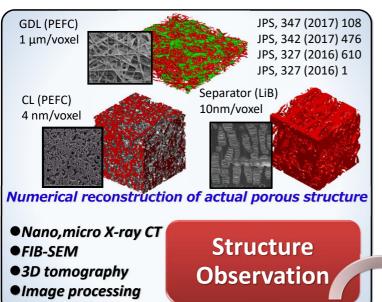
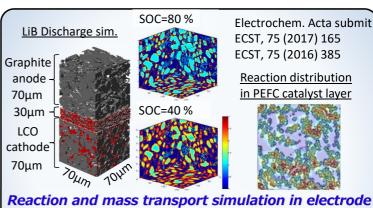
Porous structure evaluation and application to analysis of battery technology

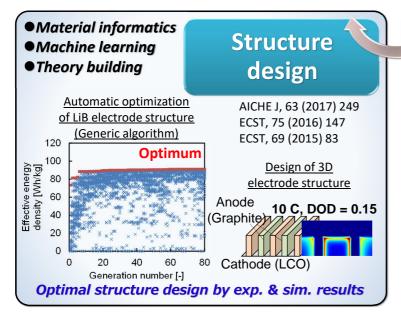
Battery group in Process Systems Engineering Laboratory, Dept. of Chemical Engineering, Kyushu University

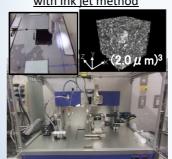




Porous electrode science

Improvement of cell performance by focusing on heterogeneous real porous electrode structure


Lithium ion batteries (LiBs), Polymer Electrolyte Fuel Cells (PEFCs), Vanadium Redox Flow Batteries (VRFB), All-solid state batteries, air batteries, various electrochemical devices and systems



Numerical Simulation

- Reaction and mass
- Pore-network model
- ●LBM, DNS
- Multi-block method

Cell fabrication In-situ Exp. Fabrication of CL with Ink jet method

●Inkjet, 3D printer

Particle control

Direct visualization

IJHE, 41 (2016) 21352 JPS, 327 (2016) 1

Comparison with exp. for LiB sim. (volume expansition, charge curve)

Fabrication of optimal structure and check with exp

Academic fields: Electrochemistry, Chemical reaction engineering, Process systems engineering, Transport phenomena, Fluid dynamics, Separation Engineering, Powder Engineering

Dept. HP http://www.chem-eng.kyushu-u.ac.jp/e/index.html Research gate https://www.researchgate.net/profile/Gen_Inoue3 **JST PRESTO** https://www.jst.go.jp/crest/soukaimen/EN/presto

http://postk6.t.u-tokyo.ac.jp/en/ **Post K Proi**

http://hyoka.ofc.kyushu-u.ac.jp/search/details/K001432/english.html **Database** http://www.nims.go.jp/GREEN/en/research/technologyintegration.html **NIMS Green**